论文标题
纯射击公寓的同型类别和Grothendieck二重性
The homotopy category of pure injective flats and Grothendieck duality
论文作者
论文摘要
令(x; ox)是一个具有双重复合物的本地noephian方案。我们证明dox - :k(pinfx)----> k(indx)是三角形类别的等效性,其中k(INGX)是纯式牛的同性恋类别的同型式牛(pinfx)类别是同型式封装。如果x是仿射,我们表明这种等效性是Grothendieck二元定理的无限完成。此外,我们证明了d ox-诱导公寓的纯派生类别与绝对纯准共晶牛群的纯衍生类别之间的等效性。
Let (X;OX) be a locally noetherian scheme with a dualizing complex D. We prove that DOX - : K(PinfX)----> K(InjX) is an equivalence of triangulated categories where K(InjX) is the homotopy category of injective quasi-coherent OX- modules and K(PinfX) is the homotopy category of pure injective flat quasi-coherent OX-modules. Where X is affine, we show that this equivalence is the infinite completion of the Grothendieck duality theorem. Furthermore, we prove that D OX - induces an equivalence between the pure derived category of flats and the pure derived category of absolutely pure quasi-coherent OX-modules.