论文标题

非连线性旋转和电场控制:评论

Noncollinear Spintronics and Electric-Field Control: A Review

论文作者

Qin, Peixin, Yan, Han, Wang, Xiaoning, Feng, Zexin, Guo, Huixin, Zhou, Xiaorong, Wu, Haojiang, Zhang, Xin, Leng, Zhaoguogang, Chen, Hongyu, Liu, Zhiqi

论文摘要

我们的世界由具有不同结构的各种材料组成,在这些材料中,旋转结构在当代信息技术的自旋设备中起着关键作用。除了传统的共线自旋材料(例如共线铁磁铁和抗铁磁性耦合材料)之外,由于异国情调的物理现象,非共线性旋转材料还出现了研究的热点。 In this Review, we firstly introduce two types noncollinear spin structures, i.e., the chiral spin structure that yields real-space Berry phases and the coplanar noncollinear spin structure that could generate momentum-space Berry phases, and then move to relevant novel physical phenomena including topological Hall effect, anomalous Hall effect, multiferroic, Weyl fermions, spin-polarized current, and spin Hall effect without spin-orbit这些非共线自旋系统中的耦合。之后,我们总结并详细说明了对非共线旋转结构和相关物理效应的电场控制,这可以在将来实现超低功率自旋设备。在最终的前景部分中,我们强调了实验检测引人入胜的自旋极极化电流的重要性和可能的​​途径,在没有旋转轨道耦合并探索各向异性磁势率和域磁性磁化材料的情况下,验证了旋转厅的效应,并验证了无关的磁性磁化材料对非collyaleal抗菌素的效果。

Our world is composed of various materials with different structures, where spin structures have been playing a pivotal role in spintronic devices of the contemporary information technology. Apart from conventional collinear spin materials such as collinear ferromagnets and collinear antiferromagnetically coupled materials, noncollinear spintronic materials have emerged as hot spots of research attention owing to exotic physical phenomena. In this Review, we firstly introduce two types noncollinear spin structures, i.e., the chiral spin structure that yields real-space Berry phases and the coplanar noncollinear spin structure that could generate momentum-space Berry phases, and then move to relevant novel physical phenomena including topological Hall effect, anomalous Hall effect, multiferroic, Weyl fermions, spin-polarized current, and spin Hall effect without spin-orbit coupling in these noncollinear spin systems. Afterwards, we summarize and elaborate the electric-field control of the noncollinear spin structure and related physical effects, which could enable ultralow power spintronic devices in future. In the final outlook part, we emphasize the importance and possible routes for experimentally detecting the intriguing theoretically predicted spin-polarized current, verifying the spin Hall effect in the absence of spin-orbit coupling and exploring the anisotropic magnetoresistance and domain-wall-related magnetoresistance effects for noncollinear antiferromagnetic materials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源