论文标题
包装图形有限的超级细分的色数
Packing chromatic numbers of finite super subdivisions of graphs
论文作者
论文摘要
图$ g $的\ textIt {包装色号},用$%χ_ρ(g)$表示,是最小的整数$ k $,因此可以将$ g $的顶点集划分为集合$ v_i $,$ v_i $,$ i \ in \ in \ in \ in \ in \ ldots,\ ldots,k \ \ k \ is $ i $ is $ is $ v_,在本文中,我们介绍了图形的\ textit {有限的超级细分}的色彩数字的一些一般属性。我们确定了一个循环的完整图,周期和\ textit {邻域电晕图的有限超级细分的包装数字和完整图和路径的路径。
The \textit{packing chromatic number} of a graph $G$, denoted by $% χ_ρ(G)$, is the smallest integer $k$ such that the vertex set of $G$ can be partitioned into sets $V_i$, $i\in \{1,\ldots,k\}$, where each $V_i$ is an $i$-packing. In this paper, we present some general properties of packing chromatic numbers of \textit{finite super subdivisions} of graphs. We determine the packing chromatic numbers of the finite super subdivisions of complete graphs, cycles and \textit{neighborhood corona graphs} of a cycle and a path respectively of a complete graph and a path.