论文标题

包装图形有限的超级细分的色数

Packing chromatic numbers of finite super subdivisions of graphs

论文作者

Lemdani, Rachid, Abbas, Moncef, Ferme, Jasmina

论文摘要

图$ g $的\ textIt {包装色号},用$%χ_ρ(g)$表示,是最小的整数$ k $,因此可以将$ g $的顶点集划分为集合$ v_i $,$ v_i $,$ i \ in \ in \ in \ in \ in \ ldots,\ ldots,k \ \ k \ is $ i $ is $ is $ v_,在本文中,我们介绍了图形的\ textit {有限的超级细分}的色彩数字的一些一般属性。我们确定了一个循环的完整图,周期和\ textit {邻域电晕图的有限超级细分的包装数字和完整图和路径的路径。

The \textit{packing chromatic number} of a graph $G$, denoted by $% χ_ρ(G)$, is the smallest integer $k$ such that the vertex set of $G$ can be partitioned into sets $V_i$, $i\in \{1,\ldots,k\}$, where each $V_i$ is an $i$-packing. In this paper, we present some general properties of packing chromatic numbers of \textit{finite super subdivisions} of graphs. We determine the packing chromatic numbers of the finite super subdivisions of complete graphs, cycles and \textit{neighborhood corona graphs} of a cycle and a path respectively of a complete graph and a path.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源