论文标题
量子宇宙学引起的古典宇宙
Classical Universe Arising from Quantum Cosmology
论文作者
论文摘要
在本文中,我们通过应用Weyl-Wigner-groenewold-形式 - 变形量化的量子形式,研究量子宇宙学的经典限制和统一演变,以与均质和各向同性宇宙的量子宇宙学具有正空间曲率和正态的标量标质场。相应的量子宇宙学(类似于量子宇宙学的规范量化方案中的schrödinger解释)用Moyal-wheeler--dewitt方程描述,该方程在Moyal相空间中具有精确的溶液,从而导致Wigner Quasiprobity分布功能,从而在经典的解决方案上达到峰值。我们表明,对于量子数$ n $的很大价值,出现的古典宇宙充满了带有量子机械起源的辐射。另外,我们在模型的标量场扇区引入了规范变换,以使新规范变量的共轭力动量在转化的总汉密尔顿式中线性出现。使用这种规范转换,我们表明,它可能导致从真实动力学变量中解散时间。我们获得了连贯和挤压状态的时间依赖性的Wigner函数。我们表明,这些Wigner函数的峰遵循相空间中的经典轨迹。
In this paper, we study the classical limit and unitary evolution of quantum cosmology by applying the Weyl--Wigner--Groenewold--Moyal formalism of deformation quantization to quantum cosmology of a homogeneous and isotropic universe with positive spatial curvature and conformally coupled scalar field. The corresponding quantum cosmology (similar to the Schrödinger interpretation in canonical quantization scheme of quantum cosmology) is described by the Moyal--Wheeler--DeWitt equation which has an exact solution in Moyal phase space, resulting in Wigner quasiprobability distribution function, peaking over the classical solutions. We show that for a large value of the quantum number $n$, the emerged classical universe is filled with radiation with quantum mechanical origin. Also, we introduce a canonical transformation on the scalar field sector of the model such that the conjugate momenta of the new canonical variable appear linearly in the transformed total Hamiltonian. Using this canonical transformation, we show that, it may lead to disentangle the time from the true dynamical variables. We obtain the time-dependent Wigner function for a coherent as well as for squeezed states. We show that the peak of these Wigner functions follows the classical trajectory in the phase space.