论文标题

动态galo理论中的阿贝尔扩展

Abelian extensions in dynamical Galois theory

论文作者

Andrews, Jesse, Petsche, Clayton

论文摘要

我们提出了与多项式相关的动态GALOIS组何时是Abelian的猜想表征,我们在几种情况下证明了我们的猜想,包括$ {\ Mathbb Q} $的稳定二次案例。在后批判性无限的情况下,该证明使用代数技术,其中包括有关循环$ p $延伸的塔的结果的结果。在后有限的情况下,证明使用高度理论以及Amoroso-Zannier和Amoroso-Dvornicich的结果,以及Arakelov-Zhang配对的特性。

We propose a conjectural characterization of when the dynamical Galois group associated to a polynomial is abelian, and we prove our conjecture in several cases, including the stable quadratic case over ${\mathbb Q}$. In the postcritically infinite case, the proof uses algebraic techniques, including a result concerning ramification in towers of cyclic $p$-extensions. In the postcritically finite case, the proof uses the theory of heights together with results of Amoroso-Zannier and Amoroso-Dvornicich, as well as properties of the Arakelov-Zhang pairing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源