论文标题

强大的自我监督学习单平面(Monoplanar)和双平面(Biplanar)X射线荧光镜检查中的确定性错误

Robust Self-Supervised Learning of Deterministic Errors in Single-Plane (Monoplanar) and Dual-Plane (Biplanar) X-ray Fluoroscopy

论文作者

Chow, Jacky C. K., Boyd, Steven K., Lichti, Derek D., Ronsky, Janet L.

论文摘要

在视频框架上捕获X射线图像的透视成像对于指导血管外科医生和介入放射学家的导管插入是有利的。可视化动力学运动可以使患者对患者进行较少的创伤进行复杂的手术程序。为了提高手术精度,血管内手术可以通过校准从更准确的荧光检查数据中受益。本文提出了适用于单平面和双平面荧光镜检查的强大自我校准算法。荧光镜在强烈的几何网络配置中成像了三维(3D)目标场。通过最大化Student-T概率分布函数的可能性,同时估算了目标的未知3D位置和荧光镜姿势。然后,使用平滑的K-Nearem邻居(KNN)回归来对稳健束调节的图像再投影误差的确定性组件进行建模。然后,将最大似然估计步骤和KNN回归步骤迭代重复直至收敛。在改变训练图像的数量时比较了四个不同的误差模型方案。已经发现,使用平滑的KNN回归可以自动对使用小型训练数据集的人类专家的荧光镜检查中的系统误差自动建模。当使用所有训练图像时,将3D映射误差从0.61-0.83 mm减少到校准后的0.04 mm(改善94.2-95.7%),并将2D再生投影误差从1.17-1.31减少到0.20-0.21个像素(改善83.2-83.8%)。当使用双台式透视镜检查时,系统的3D测量精度从0.60 mm提高到0.32 mm(改善47.2%)。

Fluoroscopic imaging that captures X-ray images at video framerates is advantageous for guiding catheter insertions by vascular surgeons and interventional radiologists. Visualizing the dynamical movements non-invasively allows complex surgical procedures to be performed with less trauma to the patient. To improve surgical precision, endovascular procedures can benefit from more accurate fluoroscopy data via calibration. This paper presents a robust self-calibration algorithm suitable for single-plane and dual-plane fluoroscopy. A three-dimensional (3D) target field was imaged by the fluoroscope in a strong geometric network configuration. The unknown 3D positions of targets and the fluoroscope pose were estimated simultaneously by maximizing the likelihood of the Student-t probability distribution function. A smoothed k-nearest neighbour (kNN) regression is then used to model the deterministic component of the image reprojection error of the robust bundle adjustment. The Maximum Likelihood Estimation step and the kNN regression step are then repeated iteratively until convergence. Four different error modeling schemes were compared while varying the quantity of training images. It was found that using a smoothed kNN regression can automatically model the systematic errors in fluoroscopy with similar accuracy as a human expert using a small training dataset. When all training images were used, the 3D mapping error was reduced from 0.61-0.83 mm to 0.04 mm post-calibration (94.2-95.7% improvement), and the 2D reprojection error was reduced from 1.17-1.31 to 0.20-0.21 pixels (83.2-83.8% improvement). When using biplanar fluoroscopy, the 3D measurement accuracy of the system improved from 0.60 mm to 0.32 mm (47.2% improvement).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源