论文标题
RF指纹和深度学习有助于5G的UE定位
RF Fingerprinting and Deep Learning Assisted UE Positioning in 5G
论文作者
论文摘要
在这项工作中,我们调查了5G和超越网络中深度学习(DL)协助的用户设备(UE)定位。与当今网络中使用的最新定位算法相比,无线电信号指纹和机器学习(ML)辅助定位需要较小的额外反馈开销。定位估计值直接在无线电访问网络(RAN)内进行,从而有助于无线电资源管理。常规定位算法将用作条件差异很大的环境的备份;但是ML辅助定位是更有效,更简单的技术,可以提供更好或类似的定位精度。在这方面,我们研究了ML辅助定位方法,并使用系统级仿真来评估其性能,以在芝加哥林肯公园的户外场景中评估其性能。该研究基于使用射线疗法工具,3GPP 5G NR符合系统级模拟器和DL框架来估计UE的定位精度。在实际情况下,使用射线跟踪工具和系统级模拟器有助于避免昂贵的驱动器测试测量。我们提出的机制是迈向未来网络中更加主动的移动性管理的第一步。我们评估和比较各种DL模型的性能,并显示出适当的系统功能模型的最佳DL配置范围内的平均定位误差。
In this work, we investigate user equipment (UE) positioning assisted by deep learning (DL) in 5G and beyond networks. As compared to state of the art positioning algorithms used in today's networks, radio signal fingerprinting and machine learning (ML) assisted positioning requires smaller additional feedback overhead; and the positioning estimates are made directly inside the radio access network (RAN), thereby assisting in radio resource management. The conventional positioning algorithms will be used as back-up for the environments with high variability in conditions; but ML-assisted positioning serves as more efficient and simpler technique to provide better or similar positioning accuracy. In this regard, we study ML-assisted positioning methods and evaluate their performance using system level simulations for an outdoor scenario in Lincoln park Chicago. The study is based on the use of raytracing tools, a 3GPP 5G NR compliant system level simulator and DL framework to estimate positioning accuracy of the UE. The use of raytracing tool and system level simulator helps avoid expensive drive test measurements in practical scenarios. Our proposed mechanism is a first step towards more proactive mobility management in future networks. We evaluate and compare performance of various DL models and show mean positioning error in the range of 1-1.5m for the best DL configuration with appropriate system feature-modeling.