论文标题
有限差/galerkin有限元模拟半线性波方程,并具有比例不变的阻尼和质量和功率非线性
Finite Difference/Galerkin Finite Element Simulation of the Semi-Linear Wave Equation with Scale-Invariant Damping and Mass and Power Non-Linearity
论文作者
论文摘要
这项研究是针对半线性尺度不变波方程的初始边界值问题(IBVP)的数值解决方案的关注,并具有阻尼,质量和功率非线性。上述IBVP的数值结果是通过使用Standart Galerkin有限元法(GFEM)进行空间变量获得的,并使用有限差方法(FDM)离散时间变量。 FDM还用于空间变量的离散化,以获得数值结果的准确性。观察到具有不同数值方案的数值结果兼容。为不同的初始条件提供了对所考虑问题的数值模拟。
This study is concern with the numerical solution of the initial boundary value problem (IBVP) for the semilinear scale-invariant wave equation with damping and mass and power non-linearity. Numerical results of the aforementioned IBVP is obtained by using standart Galerkin finite element method (GFEM) for the spatial variable and the temporal variable is discretized with the finite difference method (FDM). The FDM is also used for the discretization of the spatial variable for the accuracy of the numerical results. The obtained numerical results with different numerical schemes are observed compatible. Numerical simulation of the considered problem is given for the different initial conditions.