论文标题
加利利卫星的长期演变:将Callisto捕获到共鸣中
Long-term evolution of the Galilean satellites: the capture of Callisto into resonance
论文作者
论文摘要
语境。夫妇木星 - io中强烈的潮汐消散被传播到涉及拉普拉斯共振(IO,欧罗巴和Ganymede)的所有卫星,从而导致其轨道迁移。 目标。我们的目的是表征加利利卫星在太阳系寿命上的未来行为,并量化拉普拉斯共振的稳定性。由于潮汐耗散使从当前共振的退出或捕获到新的谐振中成为可能,因此我们研究了Callisto捕获到共鸣中。 方法。我们使用最近的半分析模型的改进版本进行数百种传播。当Ganymede向外移动时,它与Callisto接近2:1的共鸣,在系统中引起了暂时的混乱运动。因此,我们画出了共鸣遭遇结果的统计图片。 结果。该系统可以分为两个不同的结果:a)三个2:1两体共振的链(io-europa,europa-ganymede和ganymede-callisto),或b)涉及2:1两体共振的io-europa io-europa加上至少一个纯4:2:1纯4:2:1纯4:2:1三型三摩托的共鸣,通常是三型三摩托的共鸣,大多数人之间的共振链,大多数人之间的gurip。如果A(56 \%的模拟),laplace共振始终保留,偏心率仍然局限于低于0.01的小值。如果B(占模拟的44%\%),拉普拉斯共振通常受到干扰,而Ganymede和Callisto的偏心率可以增加到约0.1,使得这种配置不稳定并将系统驱动到新的共振中。 结论。从我们的结果来看,将Callisto捕获到共振中似乎很可能(我们的模拟的100%)。假设对IO和木星之间的耗散的最新估计,共鸣的遭遇发生在大约1.5 Gyrs。因此,保证了拉普拉斯共振的稳定性至少至少约为1.5个回旋。
Context. The strong tidal dissipation in the couple Jupiter-Io is spread to all the moons involved in the Laplace resonance (Io, Europa, and Ganymede), leading to a migration of their orbits. Aims. We aim to characterize the future behavior of the Galilean satellites over the Solar System lifetime and to quantify the stability of the Laplace resonance. Since tidal dissipation makes possible the exit from the current resonances or capture into new ones, we investigate the capture of Callisto into resonance. Methods. We perform hundreds of propagations using an improved version of a recent semi-analytical model. As Ganymede moves outwards, it approaches the 2:1 resonance with Callisto, inducing a temporary chaotic motion in the system. For this reason, we draw a statistical picture of the outcome of the resonant encounter. Results. The system can settle into two distinct outcomes: A) a chain of three 2:1 two-body resonances (Io-Europa, Europa-Ganymede and Ganymede-Callisto), or B) a resonant chain involving the 2:1 two-body resonance Io-Europa plus at least one pure 4:2:1 three-body resonance, most frequently between Europa, Ganymede and Callisto. In case A (56\% of the simulations), the Laplace resonance is always preserved and the eccentricities remain confined to small values below 0.01. In case B (44\% of the simulations), the Laplace resonance is generally disrupted and the eccentricities of Ganymede and Callisto can increase up to about 0.1, making this configuration unstable and driving the system into new resonances. Conclusion. From our results, the capture of Callisto into resonance appears to be extremely likely (100\% of our simulations). Assuming the most recent estimate of the dissipation between Io and Jupiter, the resonant encounter happens at about 1.5 Gyrs from now. Therefore, the stability of the Laplace resonance is guaranteed at least up to about 1.5 Gyrs.