论文标题

使用探针车辆数据对信号交叉方法的车辆计数实时估计

Real-time Estimation of Vehicle Counts on Signalized Intersection Approaches Using Probe Vehicle Data

论文作者

Aljamal, Mohammad A., Abdelghaffar, Hossam M., Rakha, Hesham A.

论文摘要

本文提出了一种新的方法,用于估计仅使用探针车辆数据沿信号方法行驶的车辆数量。所提出的方法使用Kalman滤波技术使用预期的旅行时间的实时探测器估计来产生可靠的车辆数量估计。提出的方法引入了一个新型的变量估计间隔,该间隔允许更高的估计精度,因为更新时间间隔始终包含固定数量的探针车辆。使用经验和模拟数据评估了所提出的方法,前者是沿弗吉尼亚州布莱克斯堡市中心的信号道路收集的。结果表明,提出的方法产生的车辆计数估计值是准确的。该论文还可以在安装单个固定传感器(例如环检测器)时检查模型的准确性,从而产生略有改进,尤其是当探针车市场穿透率较低时。最后,本文调查了估计模型对交通需求水平的敏感性,这表明该模型在较高需求水平上的效果更好,鉴于有更多的探针车辆以相同的市场渗透率存在。

This paper presents a novel method for estimating the number of vehicles traveling along signalized approaches using probe vehicle data only. The proposed method uses the Kalman Filtering technique to produce reliable vehicle count estimates using real-time probe vehicle estimates of the expected travel times. The proposed method introduces a novel variable estimation interval that allows for higher estimation precision, as the updating time interval always contains a fixed number of probe vehicles. The proposed method is evaluated using empirical and simulated data, the former of which were collected along a signalized roadway in downtown Blacksburg, VA. Results indicate that vehicle count estimates produced by the proposed method are accurate. The paper also examines the model's accuracy when installing a single stationary sensor (e.g., loop detector), producing slight improvements especially when the probe vehicle market penetration rate is low. Finally, the paper investigates the sensitivity of the estimation model to traffic demand levels, showing that the model works better at higher demand levels given that more probe vehicles exist for the same market penetration rate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源