论文标题

使用线性回归和神经网络模型的预测比特币关闭价格系列

Forecasting Bitcoin closing price series using linear regression and neural networks models

论文作者

Uras, Nicola, Marchesi, Lodovica, Marchesi, Michele, Tonelli, Roberto

论文摘要

本文使用有关前几天的价格和数量的数据来研究如何预测比特币每日收盘价系列。比特币的价格行为基本上还没有探索,带来了新的机会。我们将我们的结果与两项现代作品进行了关于比特币价格预测的现代作品,并与著名的著名论文使用了Intel,National Bank股票和Microsoft Daily Nasdaq收盘价涉及3年间隔。我们在同时遵循不同的方法,同时实施统计技术和机器学习算法。单变量系列预测的SLR模型仅使用收盘价,而多元系列的MLR模型同时使用价格和数量数据。我们将ADF检验应用于这些系列,这与随机步行无关。我们还使用了两个人工神经网络:MLP和LSTM。然后,我们将数据集划分为较短的序列,代表不同的价格制度,使用多个以上的价格获得了最佳结果,从而确认了我们的政权假设。所有模型均以MAPE和RELATIVERMSE进行评估。它们的表现良好,总体上比在基准测试中获得的要好。基于结果,可以证明所提出的方法的功效及其对最新方法的贡献。

This paper studies how to forecast daily closing price series of Bitcoin, using data on prices and volumes of prior days. Bitcoin price behaviour is still largely unexplored, presenting new opportunities. We compared our results with two modern works on Bitcoin prices forecasting and with a well-known recent paper that uses Intel, National Bank shares and Microsoft daily NASDAQ closing prices spanning a 3-year interval. We followed different approaches in parallel, implementing both statistical techniques and machine learning algorithms. The SLR model for univariate series forecast uses only closing prices, whereas the MLR model for multivariate series uses both price and volume data. We applied the ADF -Test to these series, which resulted to be indistinguishable from a random walk. We also used two artificial neural networks: MLP and LSTM. We then partitioned the dataset into shorter sequences, representing different price regimes, obtaining best result using more than one previous price, thus confirming our regime hypothesis. All the models were evaluated in terms of MAPE and relativeRMSE. They performed well, and were overall better than those obtained in the benchmarks. Based on the results, it was possible to demonstrate the efficacy of the proposed methodology and its contribution to the state-of-the-art.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源