论文标题

使用铰链马尔可夫随机字段进行用户分析

User Profiling Using Hinge-loss Markov Random Fields

论文作者

Farnadi, Golnoosh, Getoor, Lise, Moens, Marie-Francine, De Cock, Martine

论文摘要

已经提出了各种方法来自动从社交媒体中的数字足迹中推断出用户的概况。大多数提出的方法都集中在挖掘单一类型的信息,同时忽略其他可用用户生成的内容(UGC)的来源。在本文中,我们提出了一种机制来推断各种用户特征,例如,年龄,性别和人格特征,然后可以将其编译到用户配置文件中。为此,我们通过在不同的多种资源来源以及社会关系来源进行推理和推理来对社交媒体用户进行建模。我们的模型基于使用Hinge-loss Markov随机字段(HL-MRF)的统计关系学习框架,这是一类概率图形模型,可以使用一组一阶逻辑规则来定义,该模型可以定义。我们通过超过5K用户和几乎725k的关系来验证Facebook的数据方法。我们展示了如何使用HL-MRF来通过状态更新,个人资料图片和Facebook页面喜欢的形式利用文本,视觉和关系内容来开发通用且可扩展的用户分析框架。我们的实验结果表明,我们提出的模型成功地结合了多种信息来源,胜过竞争的方法,这些方法仅使用一种信息来源或在不同来源范围内使用一种集合方法来建模社交媒体中的用户。

A variety of approaches have been proposed to automatically infer the profiles of users from their digital footprint in social media. Most of the proposed approaches focus on mining a single type of information, while ignoring other sources of available user-generated content (UGC). In this paper, we propose a mechanism to infer a variety of user characteristics, such as, age, gender and personality traits, which can then be compiled into a user profile. To this end, we model social media users by incorporating and reasoning over multiple sources of UGC as well as social relations. Our model is based on a statistical relational learning framework using Hinge-loss Markov Random Fields (HL-MRFs), a class of probabilistic graphical models that can be defined using a set of first-order logical rules. We validate our approach on data from Facebook with more than 5k users and almost 725k relations. We show how HL-MRFs can be used to develop a generic and extensible user profiling framework by leveraging textual, visual, and relational content in the form of status updates, profile pictures and Facebook page likes. Our experimental results demonstrate that our proposed model successfully incorporates multiple sources of information and outperforms competing methods that use only one source of information or an ensemble method across the different sources for modeling of users in social media.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源