论文标题

总约束和自由纠缠的群岛

Archipelagos of Total Bound and Free Entanglement

论文作者

Slater, Paul B.

论文摘要

首先,我们大大简化了一个最初相当复杂的公式 - 涉及偏差。它产生了Qubit-Quart($ 2 \ times 4 $)三参数型号的总绑定纠缠概率($ \ $ \ $ \ $ \ 0.0865542 $),该模型最近通过Li和Qiao分析了其可分离性属性。参数空间中出现了一个不连接边界区域的“群岛”,与我们预印本中最近发现的“锯齿状纠缠和证人参数化概率锯齿状岛”相似。在那里,已经检查了两个Qutrit和Twip-quart hiesmayr-l {Ö} ffler“魔术简单”和广义的Horodecki状态。但是,相反,在本研究中,在群岛中清楚地捕获了整个结合纠缠(由获得的公式)。 Further, we "upgrade" the qubit-ququart model to a two-ququart one, for which we again find a bound-entangled archipelago, with its total probability simply being now $\frac{1}{729} \left(473-512 \log \left(\frac{27}{16}\right) \left(1+\log \ left(\ frac {27} {16} \ right)\ right)\ right)\大约0.0890496 $。然后,将Qubit-quart模型“降级”到两个Qubit的模型,我们找到了一个总非限制/自由纠缠概率$ \ frac {1} {2} {2} $的群岛。

First, we considerably simplify an initially quite complicated formula -- involving dilogarithms. It yields the total bound entanglement probability ($\approx 0.0865542$) for a qubit-ququart ($2 \times 4$) three-parameter model, recently analyzed for its separability properties by Li and Qiao. An "archipelago" of disjoint bound-entangled regions appears in the space of parameters, somewhat similarly to those recently found in our preprint, "Jagged Islands of Bound Entanglement and Witness-Parameterized Probabilities". There, two-qutrit and two-ququart Hiesmayr-L{ö}ffler "magic simplices" and generalized Horodecki states had been examined. However, contrastingly, in the present study, the entirety of bound entanglement--given by the formula obtained--is clearly captured in the archipelago found. Further, we "upgrade" the qubit-ququart model to a two-ququart one, for which we again find a bound-entangled archipelago, with its total probability simply being now $\frac{1}{729} \left(473-512 \log \left(\frac{27}{16}\right) \left(1+\log \left(\frac{27}{16}\right)\right)\right) \approx 0.0890496$. Then, "downgrading" the qubit-ququart model to a two-qubit one, we find an archipelago of total non-bound/free entanglement probability $\frac{1}{2}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源