论文标题
通过传输光谱模拟了trappist-1E上分子特征的可检测性,用于未来的空间天文台
Detectability of Molecular Signatures on TRAPPIST-1e through Transmission Spectroscopy Simulated for Future Space-Based Observatories
论文作者
论文摘要
其宿主恒星宜居区(Hz)内的地面大小外球星的发现继续以越来越多的速度发生。过境光谱可以潜在地检测到这些世界的分子特征,从而表明存在大气的存在及其化学成分,包括可能表明生物圈的气体。附近的M紫色恒星周围的这样的行星(例如Trappist-1)提供了相对较好的信号,高信号/噪声以及频繁的转移以进行随访光谱。但是,即使有这些优势,附近M-Star的Hz中陆地行星的过境光谱仍然是一个挑战。本文中,我们研究了未来的空间观测者使用全球气候模型(GCM),光化学模型和辐射转移套件进行此类观测的潜力,以模拟Trappist-1E上的现代地球样大气边界条件。通过传输光谱在这种大气上生物签名的可检测性是为JWST,Luvoir,Habex和Origins建模的。我们表明,对于这些观测值中的任何一个,当我们的模拟中包括云时,在传输光谱中只能在3 sigma水平上检测到二氧化碳。这是因为云对尺度高度的影响强烈限制了大气中分子的可检测性。为了克服这些困难,空间和地面光谱之间的协同作用可能是必不可少的。
Discoveries of terrestrial, Earth-sized exoplanets that lie within the habitable zone (HZ) of their host stars continue to occur at increasing rates. Transit spectroscopy can potentially enable the detection of molecular signatures from such worlds, providing an indication of the presence of an atmosphere and its chemical composition, including gases potentially indicative of a biosphere. Such planets around nearby M-dwarf stars - such as TRAPPIST-1 - provide relatively good signal, high signal/noise, and frequent transits for follow-up spectroscopy. However, even with these advantages, transit spectroscopy of terrestrial planets in the HZ of nearby M-stars will still be a challenge. Herein, we examine the potential for future space observatories to conduct such observations, using a Global Climate Model (GCM), a photochemical model, and a radiative transfer suite to simulate modern-Earth-like atmospheric boundary conditions on TRAPPIST-1e. The detectability of biosignatures on such an atmosphere via transmission spectroscopy is modeled for JWST, LUVOIR, HabEx, and Origins. We show that for any of these observatories, only CO2 would be detectable at the 3 sigma level in transmission spectroscopy, when clouds are included in our simulations. This is because the impacts of clouds on scale height strongly limits the detectability of molecules in the atmosphere. Synergies between space- and ground-based spectroscopy may be essential in order to overcome these difficulties.