论文标题

改良无序的klein-gordon晶格中正常模式的特性:从无序到秩序

Properties of normal modes in a modified disordered Klein-Gordon lattice: From disorder to order

论文作者

Senyange, B., Plessis, J. -J. du, Manda, B. Many, Skokos, Ch.

论文摘要

我们介绍了无序的Klein-Gordon晶格模型的修改版本,该模型具有两个用于控制疾病强度的参数:$ D $,它决定了现场电位的系数范围,以及$ W $,这定义了最近邻里相互作用的强度。我们修复了$ W = 4 $,并研究系统的正常模式的属性如何在接近其订购版本(即$ d \ rightarrow 0 $)时如何变化。我们表明,随着$ d $降低,普通模式的频率的概率密度分布会带来“ u”形的轮廓。此外,我们使用两个数量来估计模式的空间范围,所谓的本地化卷$ v $(这与模式的第二时刻有关)和模式的参与号$ p $。我们表明,当$ d $接近零时,两个量规模均为$ \ propto d^{ - 2} $,并且我们在数值上验证了它们之间的比例关系为$ v/p \约2.6 $。

We introduce a modified version of the disordered Klein-Gordon lattice model, having two parameters for controlling the disorder strength: $D$, which determines the range of the coefficients of the on-site potentials, and $W$, which defines the strength of the nearest-neighbor interactions. We fix $W=4$ and investigate how the properties of the system's normal modes change as we approach its ordered version, i.e. $D\rightarrow 0$. We show that the probability density distribution of the normal modes' frequencies takes a `U'-shaped profile as $D$ decreases. Furthermore, we use two quantities for estimating the modes' spatial extent, the so-called localization volume $V$ (which is related to the mode's second moment) and the mode's participation number $P$. We show that both quantities scale as $\propto D^{-2}$ when $D$ approaches zero and we numerically verify a proportionality relation between them as $V/P \approx 2.6$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源