论文标题
模棱两可的稳定滑轮和感谢
Equivariant stable sheaves and toric GIT
论文作者
论文摘要
对于(x,l)(x,l)的(x,l)的自动形态的两极分化的旋转曲线,用y表示git商x/g。我们将一个完全忠实的函数定义为y上的y torus equivariant反光套管的类别。作为一种应用,当(x,l)是尺寸N的偏光曲叶孔时,我们将(x,l)上的稳定的含量反射式滑轮与某些(N-1)维权加权的投射空间上的(x,l)上的(x,l)上的稳定的eproivariast反身套管联系起来。
For (X,L) a polarized toric variety and G a torus of automorphisms of (X,L), denote by Y the GIT quotient X/G. We define a family of fully faithful functors from the category of torus equivariant reflexive sheaves on Y to the category of torus equivariant reflexive sheaves on X. We show, under a genericity assumption on G, that slope stability is preserved by these functors if and only if the pair ((X, L), G) satisfies a combinatorial criterion. As an application, when (X,L) is a polarized toric orbifold of dimension n, we relate stable equivariant reflexive sheaves on (X, L) to stable equivariant reflexive sheaves on certain (n-1)-dimensional weighted projective spaces.