论文标题
双链括号和定期子组
Bi-Skew Braces and Regular Subgroups of the Holomorph
论文作者
论文摘要
L. Childs定义了偏斜的支撑$(G,\ cdot,\ circ)$,如果$(g,\ circ,\ cdot)$也是偏斜的支撑,则将此概念应用于Hopf-Galois结构的等效理论。 本文的目的是处理Bi-Skew Braces $(g,\ cdot,\ circ)$从$(g,\ cdot)$的holomorph的常规子组的同等角度。特别是,我们发现T. Kohl,F。DallaVolta和作者研究的某些小组以及C. tsang都产生了Bi-Skew Braces的示例。 在建造孩子的基础上,我们还提供了各种构建双态牙套示例的方法。
L. Childs has defined a skew brace $(G, \cdot, \circ)$ to be a bi-skew brace if $(G, \circ, \cdot)$ is also a skew brace, and has given applications of this concept to the equivalent theory of Hopf-Galois structures. The goal of this paper is to deal with bi-skew braces $(G, \cdot, \circ)$ from the yet equivalent point of view of regular subgroups of the holomorph of $(G, \cdot)$. In particular, we find that certain groups studied by T. Kohl, F. Dalla Volta and the author, and C. Tsang all yield examples of bi-skew braces. Building on a construction of Childs, we also give various methods for constructing further examples of bi-skew braces.