论文标题
存在和Ulam-hyers Mittag-Leffler $ψ$ -HILFER分数功能综合方程式的稳定性
Existence and Ulam-Hyers Mittag-Leffler stability of $ψ$-Hilfer fractional functional integrodifferential equation
论文作者
论文摘要
本文致力于建立对具有广义Hilfer类型的导数的分数函数集成方程(FFIDE)的存在和唯一性结果所必需的假设。使用PICARD运算符方法和Banach固定点定理,我们为提出的问题获得了存在和独特的解决方案。与此同时,通过Pachpatte的不等式讨论了Ulam-hyers Mittag-Leffler(UHML)稳定性。为了支持我们的结果,将引入一个说明性示例。
This paper is committed to establishing the assumptions essential for the existence and uniqueness results of a fractional functional integrodifferential equation (FFIDE) having a derivative of generalized Hilfer type. Using the Picard operator method, and Banach fixed point theorem, we obtain the existence and uniqueness solution to the proposed problem. Along with this, the Ulam-Hyers Mittag-Leffler (UHML) stability is discussed via Pachpatte's inequality. For supporting our results, an illustrative example will be introduced.