论文标题
钢化级别的Lefschetz Thimble方法及其在Hubbard模型中的应用远离一半填充
Tempered Lefschetz thimble method and its application to the Hubbard model away from half filling
论文作者
论文摘要
回火的Lefschetz Thimble方法(TLTM)是一种旨在解决数值符号问题的平行型算法。它通过与整合区域连续变形的流动时间缓和系统来同时驯服符号和终身制问题。在本文中,在回顾了TLTM的基础知识后,我们解释了TLTM中的一种新算法,使我们能够通过标准准确地估算期望值,以确保全局平衡和样本量的充分性。为了证明该算法的有效性,我们将TLTM应用于哈伯德模型的量子蒙特卡洛模拟,从一半填充小尺寸的二维晶格中,并表明所获得的数值结果与准确的值一致。
The tempered Lefschetz thimble method (TLTM) is a parallel-tempering algorithm towards solving the numerical sign problem. It tames both the sign and ergodicity problems simultaneously by tempering the system with the flow time of continuous deformations of the integration region. In this article, after reviewing the basics of the TLTM, we explain a new algorithm within the TLTM that enables us to estimate the expectation values precisely with a criterion ensuring global equilibrium and the sufficiency of the sample size. To demonstrate the effectiveness of the algorithm, we apply the TLTM to the quantum Monte Carlo simulation of the Hubbard model away from half filling on a two-dimensional lattice of small size, and show that the obtained numerical results agree nicely with exact values.