论文标题
从$ p $ - adic到阿基米德物理学:重新归一化组和伯科维奇空间
From $p$-adic to Archimedean Physics: Renormalization Group Flow and Berkovich Spaces
论文作者
论文摘要
我们将$ p $ - ad的粒子中的a-box作为一个自由粒子,具有周期性边界条件,在$ p $ - ad的空间域中。我们计算其能量谱,并表明可以通过Euler产品公式从$ p $ addic频谱中恢复Archimedean粒子中的粒子盒的光谱。该产品公式来自伯科维奇空间中的流动方程,我们将其解释为通过一种重新归一化组流量连接的理论空间。我们建议,伯科维奇的空间通常可以用来将$ p $ - adic和阿基米德人的数量联系起来。
We introduce the $p$-adic particle-in-a-box as a free particle with periodic boundary conditions in the $p$-adic spatial domain. We compute its energy spectrum, and show that the spectrum of the Archimedean particle-in-a-box can be recovered from the $p$-adic spectrum via an Euler product formula. This product formula arises from a flow equation in Berkovich space, which we interpret as a space of theories connected by a kind of renormalization group flow. We propose that Berkovich spaces can be used to relate $p$-adic and Archimedean quantities generally.