论文标题

时期受限的自适应影响最大化

Time-constrained Adaptive Influence Maximization

论文作者

Tong, Guangmo, Wang, Ruiqi, Dong, Zheng, Li, Xiang

论文摘要

众所周知的影响最大化问题旨在通过在扩散过程之前选择适当的种子用户在社交网络中最大化一个信息级联的影响。在其自适应版本中,可以在观察到某些扩散结果后选择其他种子用户。另一方面,社交计算任务通常是至关重要的,因此只有产生早期的影响才是值得的,这可以自然地通过执行时间限制来建模。在本文中,我们对时间约束的自适应影响最大化问题进行了分析。我们表明,新问题与现有问题在综合上有所不同,不幸的是,当前的技术(例如suppodular最大化和自适应suppodulinity)是不可能的。在理论方面,我们提供了计算最佳策略和自适应差距的下限的硬度结果。对于从基本到高级的实用解决方案,我们设计了一系列实现高效率和可扩展性的播种政策。最后,我们通过基于现实世界数据集的大量模拟研究了提出的解决方案。

The well-known influence maximization problem aims at maximizing the influence of one information cascade in a social network by selecting appropriate seed users prior to the diffusion process. In its adaptive version, additional seed users can be selected after observing certain diffusion results. On the other hand, social computing tasks are often time-critical, and therefore only the influence resulted in the early period is worthwhile, which can be naturally modeled by enforcing a time constraint. In this paper, we present an analysis of the time-constrained adaptive influence maximization problem. We show that the new problem is combinatorially different from the existing problems, and the current techniques such as submodular maximization and adaptive submodularity are unfortunately inapplicable. On the theory side, we provide the hardness results of computing the optimal policy and a lower bound on the adaptive gap. For practical solutions, from basic to advanced, we design a series of seeding policies for achieving high efficacy and scalability. Finally, we investigate the proposed solutions through extensive simulations based on real-world datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源