论文标题

二次粗糙的赫斯顿模型和联合S&P 500/VIX微笑校准问题

The quadratic rough Heston model and the joint S&P 500/VIX smile calibration problem

论文作者

Gatheral, Jim, Jusselin, Paul, Rosenbaum, Mathieu

论文摘要

众所周知,同时拟合SPX和VIX微笑是波动性建模中最具挑战性的问题之一。由于朱利安·盖恩(Julien Guyon)引起的长期猜想是,不可能用具有连续样品路径的模型共同校准这两个量。我们将二次粗糙的赫斯顿模型作为此猜想的反例。关键的想法是粗糙波动率与价格回馈(Zumbach)效果的结合。

Fitting simultaneously SPX and VIX smiles is known to be one of the most challenging problems in volatility modeling. A long-standing conjecture due to Julien Guyon is that it may not be possible to calibrate jointly these two quantities with a model with continuous sample-paths. We present the quadratic rough Heston model as a counterexample to this conjecture. The key idea is the combination of rough volatility together with a price-feedback (Zumbach) effect.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源