论文标题
具有移动边界的二维肿瘤生长模型的数值解
Numerical solution of a two dimensional tumour growth model with moving boundary
论文作者
论文摘要
我们考虑了两个空间尺寸的血管肿瘤生长的双相连续模型,其中细胞相和流体相遵循质量和动量的保护。遵循扩散过程的有限养分控制肿瘤细胞的出生和死亡率。细胞体积分数,细胞速度 - 流体压力系统和养分浓度是模型变量。双曲线保护定律的耦合系统,\ CRED {粘性流体模型}和抛物线扩散方程,控制模型变量的动力学。肿瘤边界以细胞最外层的正常速度移动,而这种时间依赖性是设计和实施稳定且快速的数值方案的挑战。我们将模型重新铸造为一种形式,其中双曲线方程在固定的扩展域上定义,并将肿瘤边界取回,因为该界面将细胞体积分数降低到阈值以下。该过程消除了明确跟踪肿瘤边界的需求,并取消了依赖时间域的计算昂贵的重新缩短。基于双曲线保护定律的有限体积方法的数值方案,Lagrange $ \ Mathbb {p} _2- \ \ Mathbb {p} _1 $ taylor- taylor--hood有限元方法\ credcous {viscous}系统,以及大量的有限元元件的杂种式均等和副核心均值均可在两个calaboric中实现。我们证明了数值方案在迎合不规则和不对称初始肿瘤几何形状方面的多功能性。我们介绍了两个病例的数值模拟,结果与理论和启发式期望一致,例如早期线性生长速率以及边界条件对称时的径向对称性。
We consider a biphasic continuum model for avascular tumour growth in two spatial dimensions, in which a cell phase and a fluid phase follow conservation of mass and momentum. A limiting nutrient that follows a diffusion process controls the birth and death rate of the tumour cells. The cell volume fraction, cell velocity--fluid pressure system, and nutrient concentration are the model variables. A coupled system of a hyperbolic conservation law, \cred{a viscous fluid model}, and a parabolic diffusion equation governs the dynamics of the model variables. The tumour boundary moves with the normal velocity of the outermost layer of cells, and this time--dependence is a challenge in designing and implementing a stable and fast numerical scheme. We recast the model into a form where the hyperbolic equation is defined on a fixed extended domain and retrieve the tumour boundary as the interface at which the cell volume fraction decreases below a threshold value. This procedure eliminates the need to track the tumour boundary explicitly and the computationally expensive re--meshing of the time--dependent domains. A numerical scheme based on finite volume methods for the hyperbolic conservation law, Lagrange $\mathbb{P}_2 - \mathbb{P}_1$ Taylor--Hood finite element method for the \cred{viscous} system, and mass--lumped finite element method for the parabolic equations is implemented in two spatial dimensions, and several cases are studied. We demonstrate the versatility of the numerical scheme in catering for irregular and asymmetric initial tumour geometries. We present numerical simulations for both cases and the results are consistent with theoretical and heuristic expectations such as early linear growth rate and preservation of radial symmetry when the boundary conditions are symmetric.