论文标题
正常矩阵的缩放相对图
Scaled Relative Graph of Normal Matrices
论文作者
论文摘要
缩放的相对图(SRG)是一种几何工具,可将多值非线性操作员的作用映射到2D平面上,用于分析各种迭代方法的收敛性。由于SRG包括线性运算符的频谱,我们可以将SRG视为对多价值非线性运算符的频谱的概括。在这项工作中,我们进一步研究了线性操作员的SRG,并表征了块对基和正常矩阵的SRG。
The Scaled Relative Graph (SRG) is a geometric tool that maps the action of a multi-valued nonlinear operator onto the 2D plane, used to analyze the convergence of a wide range of iterative methods. As the SRG includes the spectrum for linear operators, we can view the SRG as a generalization of the spectrum to multi-valued nonlinear operators. In this work, we further study the SRG of linear operators and characterize the SRG of block-diagonal and normal matrices.