论文标题

POMET逻辑:逻辑中非通勤性的另一种方法

Pomset logic: the other approach to non commutativity in logic

论文作者

Retoré, Christian

论文摘要

三十年前,我引入了经典线性逻辑的非交通性变体,称为“ pomet逻辑”,该变体是根据称为相干空间的线性逻辑的特定分类解释发出的。除了线性逻辑的通常的交换乘法连接外,Pomet逻辑还包括一个非交通连接的“ $ \ triangleleft $”,称为“之前”,联想和自我dual:$(a \ triangleleft b)^\ perp = a^\ perp = a^\ perp \ perp \ per trianglelefeleft b^\ perp $。 POMSET逻辑证明的结论是公式的部分有序的多组。 Pomet逻辑享受具有切割,示意性语义和忠实嵌入序列的微积分的证明网络演算。 对Pomet逻辑的研究已重新开放,最新的结果是在其依次的微积分上或在其以下的钙化中,例如Guglielmi和Strassburger的深度推断。因此,现在是时候我们发布了POMSET逻辑的彻底介绍,包括已发表和未发表的材料,新的和新的结果。 Pomset Logic(1993)是Linear Logic(1987)的非共同变体,如Lambek Cyculus(1958!),也可以用作语法形式主义。这两个微积分完全不同,但我们希望我们在这里给出的代数演示,以代数术语为代数术语,并具有证据(净)正确性的语义概念,更好地匹配兰贝克对逻辑应该是什么的看法。

Thirty years ago, I introduced a non-commutative variant of classical linear logic, called "pomset logic", issued from a particular categorical interpretation of linear logic known as coherence spaces. In addition to the usual commutative multiplicative connectives of linear logic, pomset logic includes a non-commutative connective, "$\triangleleft$" called "before", associative and self-dual: $(A\triangleleft B)^\perp=A^\perp \triangleleft B^\perp$. The conclusion of a pomset logic proof is a Partially Ordered MultiSET of formulas. Pomset logic enjoys a proof net calculus with cut-elimination, denotational semantics, and faithfully embeds sequent calculus. The study of pomset logic has reopened with recent results on handsome proof nets, on its sequent calculus, or on its following calculi like deep inference by Guglielmi and Strassburger. Therefore, it is high time we published a thorough presentation of pomset logic, including published and unpublished material, old and new results. Pomset logic (1993) is a non-commutative variant of linear logic (1987) as for Lambek calculus (1958!) and it can also be used as a grammatical formalism. Those two calculi are quite different, but we hope that the algebraic presentation we give here, with formulas as algebraic terms and with a semantic notion of proof (net) correctness, better matches Lambek's view of what a logic should be.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源