论文标题
在具有立方非线性的抗血症晶格中的非线性波
Nonlinear waves in an anti-Hermitian lattice with cubic nonlinearity
论文作者
论文摘要
在抗血清线性系统中,所有能量特征值纯粹是虚构的,相应的特征向量是正交的。这意味着在此类系统中没有固定状态可用。我们认为具有立方非线性的抗赫米特晶格,并探索新型的非线性固定模式。我们讨论的是,相对种群在具有周期性边界条件的非偏置紧密结合晶格中是保守的,而不是平均时间(PT)对称晶格。我们研究了非线性非重点二聚体,三二聚体和四聚体模型,并构建固定的非线性模式。
In an anti-Hermitian linear system, all energy eigenvalues are purely imaginary and the corresponding eigenvectors are orthogonal. This implies that no stationary state is available in such systems. We consider an anti-Hermitian lattice with cubic nonlinearity and explore novel nonlinear stationary modes. We discuss that relative population is conserved in a nonreciprocal tight binding lattice with periodical boundary conditions as opposed to parity-time (PT) symmetric lattices. We study nonlinear nonrecipocal dimer, triple and quadrimer models and construct stationary nonlinear modes.