论文标题

一种强大的经济模型预测控制的混合高斯流程方法

A Hybrid Gaussian Process Approach to Robust Economic Model Predictive Control

论文作者

Rostam, Mohammadreza, Nagamune, Ryozo, Grebenyuk, Vladimir

论文摘要

本文提出了一种混合高斯过程(GP)方法,以在未知的未来干扰下进行健壮的经济模型预测控制,以减少控制器的保守主义。提出的杂种GP是两种众所周知的方法的组合,即内核组成和非线性自动回归。分析预测结果后,采用开关机制来选择这些方法之一进行干扰预测。混合GP旨在通过使用过去的干扰测量值来检测未知干扰中的意外行为。 \ textColor {black} {在混合GP中也使用了一种新颖的遗忘因素概念,从而减少了较旧测量的重量,以根据最近的干扰值提高预测准确性。}检测到的干扰信息用于减少经济预测模型的预测不确定性。模拟结果表明,与其他基于GP的方法相比,在干扰具有可识别模式的情况下,所提出的方法可以改善经济模型预测控制器的整体性能。

This paper proposes a hybrid Gaussian process (GP) approach to robust economic model predictive control under unknown future disturbances in order to reduce the conservatism of the controller. The proposed hybrid GP is a combination of two well-known methods, namely, kernel composition and nonlinear auto-regressive. A switching mechanism is employed to select one of these methods for disturbance prediction after analyzing the prediction outcomes. The hybrid GP is intended to detect not only patterns but also unexpected behaviors in the unknown disturbances by using past disturbance measurements. \textcolor{black}{A novel forgetting factor concept is also utilized in the hybrid GP, giving less weight to older measurements, in order to increase prediction accuracy based on recent disturbances values.} The detected disturbance information is used to reduce prediction uncertainty in economic model predictive controllers systematically. The simulation results show that the proposed method can improve the overall performance of an economic model predictive controller compared to other GP-based methods in cases when disturbances have discernible patterns.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源