论文标题
其有限尺寸的模块与它们的共同学维度一致
Modules whose finiteness dimensions coincide with their cohomological dimensions
论文作者
论文摘要
让a成为具有身份的诺瑟式戒指的理想。我们研究了有限生成的R模型M,其finitions和A-杂质学尺寸相等。特别是,我们检查了准布布斯鲍姆,布赫斯鲍姆和溢流buchsbaum模块的相对类似物。我们揭示了这些类型的模块之间的几种相互作用,这些模块将经典理论中的一些现有结果扩展到了相对一个。
Let a be an ideal of a commutative Noetherian ring R with identity. We study finitely generated R-modules M whose a-finiteness and a-cohomological dimensions are equal. In particular, we examine relative analogues of quasi-Buchsbaum, Buchsbaum and surjective Buchsbaum modules. We reveal several interactions between these types of modules that extend some of the existing results in the classical theory to the relative one.