论文标题
$ s(ω)$和可计算性的sofic概况
Sofic profiles of $S(ω)$ and computability
论文作者
论文摘要
我们表明,对于每个sofic块$ e $ $ $ f:e_c \ e_c \ rightarrow e $,其中$ e_c $是$ \ mathbb {n} $的可计算排列的一部分$ \ mathbb {n} $。使用此信息,我们研究了一些与SOFIC块及其轮廓相关的相关有效条件。
We show that for every sofic chunk $E$ there is a bijective homomorphism $f: E_c \rightarrow E$, where $E_c$ is a chunk of the group of computable permutations of $\mathbb{N}$ so that the approximating morphisms of $E$ can be viewed as restrictions of permutations of $E_c$ to finite subsets of $\mathbb{N}$. Using this we study some relevant effectivity conditions associated with sofic chunks and their profiles.