论文标题
用于分区流体结构相互作用的准牛顿波形迭代
Quasi-Newton Waveform Iteration for Partitioned Fluid-Structure Interaction
论文作者
论文摘要
我们提出了针对分区多物理模拟的新型耦合方案,这些模拟结合了四个重要方面的强烈耦合问题:每个时间步长的隐式耦合,对相应的迭代耦合,对多率时间阶段的支持以及更高阶段的支持以及更高阶段的收敛性的快速且强大的加速度。为了实现这一目标,我们结合了波形松弛 - 一种已知的方法,可以根据时间的持续表示,以分阶段的阶梯形式达到更高级别的方法 - 与界面quasi-newton耦合,在过去的十年中,它已被开发为在过去的十年中,并且在整个过程中已被接受为一种非常强大的迭代次数迭代方法,即使是用于粘贴黑色盒子仿真代码。我们在两个学术测试案例中显示了收敛结果(就迭代求解器的收敛性和近似顺序而言) - 传热方案和流体结构相互作用模拟。我们表明,我们达到了预期的近似顺序,并且我们的迭代方法在迭代计数方面具有竞争力,而迭代方法则是为简单的一阶时耦合而设计的。
We present novel coupling schemes for partitioned multi-physics simulation that combine four important aspects for strongly coupled problems: implicit coupling per time step, fast and robust acceleration of the corresponding iterative coupling, support for multi-rate time stepping, and higher-order convergence in time. To achieve this, we combine waveform relaxation -- a known method to achieve higher order in applications with split time stepping based on continuous representations of coupling variables in time -- with interface quasi-Newton coupling, which has been developed throughout the last decade and is generally accepted as a very robust iterative coupling method even for gluing together black-box simulation codes. We show convergence results (in terms of convergence of the iterative solver and in terms of approximation order in time) for two academic test cases -- a heat transfer scenario and a fluid-structure interaction simulation. We show that we achieve the expected approximation order and that our iterative method is competitive in terms of iteration counts with those designed for simpler first-order-in-time coupling.