论文标题

通过在几何操纵面上汇总的面部标准检测强大的面部标志性检测

Robust Facial Landmark Detection via Aggregation on Geometrically Manipulated Faces

论文作者

Iranmanesh, Seyed Mehdi, Dabouei, Ali, Soleymani, Sobhan, Kazemi, Hadi, Nasrabadi, Nasser M.

论文摘要

在这项工作中,我们提出了一种实用方法,以解决面部地标检测问题。所提出的方法可以处理丰富形状变形下的较大形状和外观变化。为了处理形状变化,我们将方法配备了操纵面图像的聚合。所提出的框架仅使用一个给定的面部图像生成不同的操纵面。该方法利用了这样一个事实,即输入域中的小但精心制作的几何操纵可以欺骗深层识别模型。我们提出了三种不同的方法来产生操纵的面孔,其中两个方法通过对抗攻击进行操作,而另一种则使用已知的转换。汇总操纵的面孔提供了一种更健壮的地标检测方法,能够捕获面部形状的更重要的变形和变化。与基准数据集AFLW,300-W和COFW上的最先进方法相比,我们的方法证明了它的优势。

In this work, we present a practical approach to the problem of facial landmark detection. The proposed method can deal with large shape and appearance variations under the rich shape deformation. To handle the shape variations we equip our method with the aggregation of manipulated face images. The proposed framework generates different manipulated faces using only one given face image. The approach utilizes the fact that small but carefully crafted geometric manipulation in the input domain can fool deep face recognition models. We propose three different approaches to generate manipulated faces in which two of them perform the manipulations via adversarial attacks and the other one uses known transformations. Aggregating the manipulated faces provides a more robust landmark detection approach which is able to capture more important deformations and variations of the face shapes. Our approach is demonstrated its superiority compared to the state-of-the-art method on benchmark datasets AFLW, 300-W, and COFW.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源