论文标题

在浮点算术中安全的多党计算

Secure multiparty computations in floating-point arithmetic

论文作者

Guo, Chuan, Hannun, Awni, Knott, Brian, van der Maaten, Laurens, Tygert, Mark, Zhu, Ruiyu

论文摘要

安全的多党计算使所谓的敏感数据股票可以分配给多方,以便多方可以有效地处理数据,而无法收集有关数据的大量信息(至少没有任何各方之间没有勾结以将所有股份放在一起)。因此,当事方可以在计算结束时将其所有已处理的结果发送给值得信赖的第三方(也许是数据提供商),只有受信任的第三方才能够查看最终结果。使用单独的标准浮点算术算术可以实现用于隐私的机器学习的安全多党计算,至少在信息上,精心控制的信息的泄漏小于由于圆形而造成的精度丧失,所有这些都以严格的数学证据为基础,这些证据都以最差的数学证明在有限的数字稳定性和数字稳定性方面的最差数学证明。数值示例说明了通用线性模型的商品现成硬件的高性能,包括普通的线性最小二乘回归,二进制和多项式逻辑回归,概率回归和泊松回归。

Secure multiparty computations enable the distribution of so-called shares of sensitive data to multiple parties such that the multiple parties can effectively process the data while being unable to glean much information about the data (at least not without collusion among all parties to put back together all the shares). Thus, the parties may conspire to send all their processed results to a trusted third party (perhaps the data provider) at the conclusion of the computations, with only the trusted third party being able to view the final results. Secure multiparty computations for privacy-preserving machine-learning turn out to be possible using solely standard floating-point arithmetic, at least with a carefully controlled leakage of information less than the loss of accuracy due to roundoff, all backed by rigorous mathematical proofs of worst-case bounds on information loss and numerical stability in finite-precision arithmetic. Numerical examples illustrate the high performance attained on commodity off-the-shelf hardware for generalized linear models, including ordinary linear least-squares regression, binary and multinomial logistic regression, probit regression, and Poisson regression.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源