论文标题
使用无人机捕获图像的深层神经网络方法,用于像素级跑道路面裂纹分割
A Deep Neural Networks Approach for Pixel-Level Runway Pavement Crack Segmentation Using Drone-Captured Images
论文作者
论文摘要
路面条件是资产管理的关键方面,直接影响安全性。这项研究介绍了一种基于无人机捕获图像的人行道裂纹分割的深度神经网络方法,称为u-net,以减少机场跑道检查所需的成本和时间。提议的方法还可以用于在路上很少的车辆时期的高速公路路面条件评估。在这项研究中,马萨诸塞州Fitchburg市政机场(FMA)的各种高度的无人机收集了跑道路面图像,以评估其在裂纹分段中的质量和适用性,从中确定了最佳高度。然后使用以最佳高度捕获的无人机图像来评估U-NET模型的裂纹分割性能。深度学习方法通常需要大量的带注释的培训数据集来进行模型开发,这可能是其应用程序的主要障碍。在线注释的路面图像数据集与FMA数据一起使用,以训练U-NET模型。结果表明,即使使用有限的FMA培训图像,U-NET在FMA测试数据上的表现也很好,这表明它具有良好的概括能力,并且可以用于机场跑道和高速公路人行道。
Pavement conditions are a critical aspect of asset management and directly affect safety. This study introduces a deep neural network method called U-Net for pavement crack segmentation based on drone-captured images to reduce the cost and time needed for airport runway inspection. The proposed approach can also be used for highway pavement conditions assessment during off-peak periods when there are few vehicles on the road. In this study, runway pavement images are collected using drone at various heights from the Fitchburg Municipal Airport (FMA) in Massachusetts to evaluate their quality and applicability for crack segmentation, from which an optimal height is determined. Drone images captured at the optimal height are then used to evaluate the crack segmentation performance of the U-Net model. Deep learning methods typically require a huge set of annotated training datasets for model development, which can be a major obstacle for their applications. An online annotated pavement image dataset is used together with the FMA data to train the U-Net model. The results show that U-Net performs well on the FMA testing data even with limited FMA training images, suggesting that it has good generalization ability and great potential to be used for both airport runways and highway pavements.