论文标题

小面积估计中的因果推断

Causal Inferences in Small Area Estimation

论文作者

Ranjbar, Setareh, Salvati, Nicola, Pacini, Barbara

论文摘要

在进行影响评估并进行因果推论时,重要的是要确认对不同领域(地理,社会人口统计学或社会经济)的治疗效果的异质性。如果感兴趣的域对其样本量(甚至在某些情况下为零)很小,则评估者已进入小面积估计(SAE)困境。 基于反向倾向加权估计器和传统小面积预测变量的修改,本文提出了一种新方法,以估计面积计划外域的特定平均治疗效果。通过这些方法,我们还可以提供政策影响图,以帮助更好地针对治疗组。我们开发了所提出的预测变量的分析平均误差(MSE)估计值。广泛的模拟分析也基于实际数据,表明在大多数情况下,提出的技术导致了更有效的估计器。

When doing impact evaluation and making causal inferences, it is important to acknowledge the heterogeneity of the treatment effects for different domains (geographic, socio-demographic, or socio-economic). If the domain of interest is small with regards to its sample size (or even zero in some cases), then the evaluator has entered the small area estimation (SAE) dilemma. Based on the modification of the Inverse Propensity Weighting estimator and the traditional small area predictors, the paper proposes a new methodology to estimate area specific average treatment effects for unplanned domains. By means of these methods we can also provide a map of policy impacts, that can help to better target the treatment group(s). We develop analytical Mean Squared Error (MSE) estimators of the proposed predictors. An extensive simulation analysis, also based on real data, shows that the proposed techniques in most cases lead to more efficient estimators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源