论文标题
关于复杂的hyperbolic kleinian组的注释
A note on complex-hyperbolic Kleinian groups
论文作者
论文摘要
令$γ$为在复杂的双曲线$ n $ -space $ \ mathbb {h}^n_ \ mathbb {c} $上作用于复杂双曲线$ n $ -space $ \ space $ \ mathbb {c} $的异构体。在本说明中,我们证明,如果$γ$无扭转,无扭转,而关键指数$δ(γ)$严格低于$ 2 $,则复杂的歧管$ \ mathbb {h}^n_ \ mathbb {c}/γ$是Stein。我们还讨论了几种相关的猜想。
Let $Γ$ be a discrete group of isometries acting on the complex hyperbolic $n$-space $\mathbb{H}^n_\mathbb{C}$. In this note, we prove that if $Γ$ is convex-cocompact, torsion-free, and the critical exponent $δ(Γ)$ is strictly lesser than $2$, then the complex manifold $\mathbb{H}^n_\mathbb{C}/Γ$ is Stein. We also discuss several related conjectures.