论文标题

卡尔曼估计具有不连续Lipschitz系数的复杂二阶椭圆算子

Carleman estimate for complex second order elliptic operators with discontinuous Lipschitz coefficients

论文作者

Francini, E., Vessella, S., Wang, J. -N.

论文摘要

在本文中,我们为复杂的二阶椭圆操作员提供了当地的卡尔曼估计,其Lipschitz系数具有跳跃不连续性。在[bl]和[dcflvw]中的参数中梳理结果,我们提出了一种基本方法,以在系数上的最佳规则性假设下得出Carleman估计值。

In this paper, we derive a local Carleman estimate for the complex second order elliptic operator with Lipschitz coefficients having jump discontinuities. Combing the result in [BL] and the arguments in [DcFLVW], we present an elementary method to derive the Carleman estimate under the optimal regularity assumption on the coefficients.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源