论文标题

将Mott局部电子局部化为拓扑和旋转轨道耦合Dirac Fermions

Deconfinement of Mott Localized Electrons into Topological and Spin-Orbit Coupled Dirac Fermions

论文作者

Pizarro, José M., Adler, Severino, Zantout, Karim, Mertz, Thomas, Barone, Paolo, Valentí, Roser, Sangiovanni, Giorgio, Wehling, Tim O.

论文摘要

电子相关性,自旋轨道耦合和拓扑的相互作用有望实现量子物质的外来状态。蜂窝晶格上强烈相互作用的电子模型揭示了具有非常规量子状态的丰富相图,包括手性超导性和相关的量子自旋霍尔绝缘子与复杂的磁性相互交织在一起。但是,这些电子状态的物质实现是稀缺或不存在的。在这项工作中,我们提出并表明将1T键$ _ {2} $堆叠到双层中,可以从单层中的深色mott绝缘状态解束性,从而将相关的Dirac填充物系统脱离,约束在倍层中具有可观的旋转轨道耦合的相关系统。 1t-tase $ _ {2} $在每一层中开发一个戴星(SOD)电荷密度波模式。当将属于两个阳化层的SOD中心堆叠在蜂窝状图案中时,该系统在狄拉克半金属金属状态的制度中实现了广义的Kane-Mele-Hubbard模型,在该模式下,毛ubbard态相互作用和旋转轨道耦合。在电荷中立性,该系统接近量子自旋大厅和抗铁磁绝缘子之间的量子相变。我们将垂直的电场和扭曲角度识别为两个旋钮,以控制系统中的拓扑结构和自旋轨道耦合。它们的组合可以将其推向迄今未探索的相关电子物理学的基础,包括量子三级点和异国情调的一阶拓扑相变。

The interplay of electronic correlations, spin-orbit coupling and topology holds promise for the realization of exotic states of quantum matter. Models of strongly interacting electrons on honeycomb lattices have revealed rich phase diagrams featuring unconventional quantum states including chiral superconductivity and correlated quantum spin Hall insulators intertwining with complex magnetic order. Material realizations of these electronic states are however scarce or inexistent. In this work, we propose and show that stacking 1T-TaSe$_{2}$ into bilayers can deconfine electrons from a deep Mott insulating state in the monolayer to a system of correlated Dirac fermions subject to sizable spin-orbit coupling in the bilayer. 1T-TaSe$_{2}$ develops a Star-of-David (SoD) charge density wave pattern in each layer. When the SoD centers belonging to two adyacent layers are stacked in a honeycomb pattern, the system realizes a generalized Kane-Mele-Hubbard model in a regime where Dirac semimetallic states are subject to significant Mott-Hubbard interactions and spin-orbit coupling. At charge neutrality, the system is close to a quantum phase transition between a quantum spin Hall and an antiferromagnetic insulator. We identify a perpendicular electric field and the twisting angle as two knobs to control topology and spin-orbit coupling in the system. Their combination can drive it across hitherto unexplored grounds of correlated electron physics including a quantum tricritical point and an exotic first-order topological phase transition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源