论文标题
被困在两个堆叠环中的玻璃孔冷凝水的轨道角动量动力学
Orbital angular momentum dynamics of Bose-Einstein condensates trapped in two stacked rings
论文作者
论文摘要
我们研究了在堆栈构型中捕获在两个隧道耦合环中的排斥玻色子冷凝物的轨道角动量模式的稳定性和动力学。在平均场理论中,我们为系统提供了一个两态模型,在这种情况下,我们以单个轨道角动量模式填充了两个响声,并在其他模式下包括小的扰动。分析模型的固定点解决方案和相关的经典哈密顿量,我们表征了固定状态和随后的动力学的不稳定。通过在环之间填充单个轨道角动量模式,并在戒指之间存在任意种群不平衡,我们可以分析地得出约瑟夫森振荡与宏观量子自我捕获和数值研究这些溶液的稳定性之间的边界。
We investigate the stability and dynamics of the orbital angular momentum modes of a repulsive Bose-Einstein condensate trapped in two tunnel-coupled rings in a stack configuration. Within mean-field theory, we derive a two-state model for the system in the case in which we populate equally both rings with a single orbital angular momentum mode and include small perturbations in other modes. Analyzing the fixed point solutions of the model and the associated classical Hamiltonian, we characterize the destabilization of the stationary states and the subsequent dynamics. By populating a single orbital angular momentum mode with an arbitrary population imbalance between the rings, we derive analytically the boundary between the regimes of Josephson oscillations and macroscopic quantum self-trapping and study numerically the stability of these solutions.