论文标题

变形不可知论深水标记

Distortion Agnostic Deep Watermarking

论文作者

Luo, Xiyang, Zhan, Ruohan, Chang, Huiwen, Yang, Feng, Milanfar, Peyman

论文摘要

水印是将信息嵌入可以在扭曲下生存的图像中的过程,同时要求编码的图像与原始图像几乎没有感知差异。最近,基于深度学习的方法在各种各样的图像扭曲下都取得了令人印象深刻的视觉质量和消息有效载荷的结果。但是,这些方法都需要在训练时间进行图像扭曲的模型,并且可能概括为未知的扭曲。这是不希望的,因为应用于水印图像的扭曲的类型通常是未知的且不差异的。在本文中,我们提出了一个新的框架,用于变形 - 不合时宜的水印,其中图像失真在训练过程中没有明确建模。相反,我们系统的鲁棒性来自两个来源:对抗培训和渠道编码。与固定的扭曲和噪声水平上的训练相比,我们的方法在训练过程中可用的扭曲结果可比性或更好的结果,并且在未知扭曲方面的表现更好。

Watermarking is the process of embedding information into an image that can survive under distortions, while requiring the encoded image to have little or no perceptual difference from the original image. Recently, deep learning-based methods achieved impressive results in both visual quality and message payload under a wide variety of image distortions. However, these methods all require differentiable models for the image distortions at training time, and may generalize poorly to unknown distortions. This is undesirable since the types of distortions applied to watermarked images are usually unknown and non-differentiable. In this paper, we propose a new framework for distortion-agnostic watermarking, where the image distortion is not explicitly modeled during training. Instead, the robustness of our system comes from two sources: adversarial training and channel coding. Compared to training on a fixed set of distortions and noise levels, our method achieves comparable or better results on distortions available during training, and better performance on unknown distortions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源