论文标题

有界平均振荡和准对称映射的函数在均匀类型的空间上

Functions of bounded mean oscillation and quasisymmetric mappings on spaces of homogeneous type

论文作者

Nguyen, Trang T. T., Ward, Lesley A.

论文摘要

我们建立了函数空间BMO与\ emph {同质类型} $ \ wideTilde {x} {x}:=(x,x,ρ,μ)$的函数空间与甲合物映射理论之间的联系。连接是,$η$ - quasisymmetric映射$ f的广义雅各布的对数:\ widetilde {x} \ rightarrow \ wideTilde {x} $始终以$ \ rm {bmo}(bmo}(bmo})(\ widetilde {x} {x})$。在证明这一结果的过程中,我们首先表明,在$ \ wideTilde {x} $上,反向hölder重量$ w $的对数为$ \ rm {bmo}(\ widetilde {x})$,上述连接上上述连接在公元中,$ \ wide}。此外,我们构建了一大批空间$(x,ρ,μ)$。 Among the key ingredients of the proofs are suitable generalisations to $(X,ρ,μ)$ from the Euclidean or metric measure space settings of the Calderón--Zygmund decomposition, the Vitali Covering Theorem, the Radon--Nikodym Theorem, a lemma which controls the distortion of sets under an $η$-quasisymmetric mapping, and a result of Heinonen and Koskela表明,$η$ quasisymmmore映射的体积衍生物是反向 - 荷兰德的重量。

We establish a connection between the function space BMO and the theory of quasisymmetric mappings on \emph{spaces of homogeneous type} $\widetilde{X} :=(X,ρ,μ)$. The connection is that the logarithm of the generalised Jacobian of an $η$-quasisymmetric mapping $f: \widetilde{X} \rightarrow \widetilde{X}$ is always in $\rm{BMO}(\widetilde{X})$. In the course of proving this result, we first show that on $\widetilde{X}$, the logarithm of a reverse-Hölder weight $w$ is in $\rm{BMO}(\widetilde{X})$, and that the above-mentioned connection holds on metric measure spaces $\widehat{X} :=(X,d,μ)$. Furthermore, we construct a large class of spaces $(X,ρ,μ)$ to which our results apply. Among the key ingredients of the proofs are suitable generalisations to $(X,ρ,μ)$ from the Euclidean or metric measure space settings of the Calderón--Zygmund decomposition, the Vitali Covering Theorem, the Radon--Nikodym Theorem, a lemma which controls the distortion of sets under an $η$-quasisymmetric mapping, and a result of Heinonen and Koskela which shows that the volume derivative of an $η$-quasisymmetric mapping is a reverse-Hölder weight.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源