论文标题
实时光声系统的深度学习图像重建
Deep-learning Image Reconstruction for Real-time Photoacoustic System
论文作者
论文摘要
光声(PA)成像的最新进展已实现了微血管结构的详细图像以及对血液氧合或灌注的定量测量。用于PA成像的标准重建方法基于使用适当的信号和系统模型解决反问题。然而,对于手持式扫描仪,在大多数情况下,有限检测视图和带宽的不良条件会产生低图像对比度和严重的结构损失。在本文中,我们提出了一种基于深度卷积神经网络(CNN)的实用重建方法,以克服这些问题。它专为实时临床应用而设计,并通过模仿典型微血管网络的大规模合成数据培训。使用合成和实际数据集的实验结果证实,与传统方法相比,深度学习方法可提供优质的重建。
Recent advances in photoacoustic (PA) imaging have enabled detailed images of microvascular structure and quantitative measurement of blood oxygenation or perfusion. Standard reconstruction methods for PA imaging are based on solving an inverse problem using appropriate signal and system models. For handheld scanners, however, the ill-posed conditions of limited detection view and bandwidth yield low image contrast and severe structure loss in most instances. In this paper, we propose a practical reconstruction method based on a deep convolutional neural network (CNN) to overcome those problems. It is designed for real-time clinical applications and trained by large-scale synthetic data mimicking typical microvessel networks. Experimental results using synthetic and real datasets confirm that the deep-learning approach provides superior reconstructions compared to conventional methods.