论文标题
电子辐照对PDTE $ _2 $中超导性的影响:广义Anderson定理的应用
Electron irradiation effects on superconductivity in PdTe$_2$: an application of a generalized Anderson theorem
论文作者
论文摘要
低温($ \ sim $ 20〜K)具有2.5 MeV相对论电子的电子辐照来研究受控非磁性疾病对II型DIRAC SEMIMIMITAL PDTE型$ _2 $的正常和超导性能的影响。我们报告了使用隧道二极管谐振技术来测量纵向和霍尔电阻率,导热率和伦敦穿透深度的测量,用于各种辐照剂量。正常状态电阻率遵循MATTHIESSEN规则,其剩余电阻率的增加,$ \ sim $ 0.77 $μω$ cm/$(\ textrm {c}/\ textrm {cm}^2)$。伦敦的穿透深度和热导率结果表明,超导状态仍然完全掩盖。超导过渡温度以非零速率抑制,其速度比Abrikosov-Gor'kov依赖性所描述的速度慢约16倍,该依赖性适用于各向同性,单波段$ S $ - $ - $ - $ - $ - $ - 波超导管器中的磁杂质散射。为了获取有关配对状态的间隙结构和对称性的信息,我们基于从广义安德森定理的多波段超导体的洞察力对这些实验结果进行详细分析。这对每个可能的配对候选状态的差距各向异性施加了定量约束。我们得出的结论是,最有可能的配对候选者是一个非常规$ a_ {1g}^{+ - } $ state。虽然我们不能排除常规$ a_ {1g}^{++} $和三胞胎$ a_ {1u} $,但我们证明,这些状态需要对疾病潜力的轨道结构进行其他假设,以使其与我们的实验结果保持一致,例如,在内部散射的散射比单元状态大于一个大于一个。由于我们的理论框架的一般性,我们认为它也可用于其他自旋轨道耦合多轨道系统的辐射研究。
Low temperature ($\sim$ 20~K) electron irradiation with 2.5 MeV relativistic electrons was used to study the effect of controlled non-magnetic disorder on the normal and superconducting properties of the type-II Dirac semimetal PdTe$_2$. We report measurements of longitudinal and Hall resistivity, thermal conductivity and London penetration depth using tunnel-diode resonator technique for various irradiation doses. The normal state electrical resistivity follows Matthiessen rule with an increase of the residual resistivity at a rate of $\sim$0.77$ μΩ$cm/$(\textrm{C}/\textrm{cm}^2)$. London penetration depth and thermal conductivity results show that the superconducting state remains fully gapped. The superconducting transition temperature is suppressed at a non-zero rate that is about sixteen times slower than described by the Abrikosov-Gor'kov dependence, applicable to magnetic impurity scattering in isotropic, single-band $s$-wave superconductors. To gain information about the gap structure and symmetry of the pairing state, we perform a detailed analysis of these experimental results based on insight from a generalized Anderson theorem for multi-band superconductors. This imposes quantitative constraints on the gap anisotropies for each of the possible pairing candidate states. We conclude that the most likely pairing candidate is an unconventional $A_{1g}^{+-}$ state. While we cannot exclude the conventional $A_{1g}^{++}$ and the triplet $A_{1u}$, we demonstrate that these states require additional assumptions about the orbital structure of the disorder potential to be consistent with our experimental results, e.g., a ratio of inter- to intra-band scattering for the singlet state significantly larger than one. Due to the generality of our theoretical framework, we think that it will also be useful for irradiation studies in other spin-orbit-coupled multi-orbital systems.