论文标题
$ \ frak {gl}(m | n)$的jacobi-trudi类型公式
Jacobi-Trudi type formula for a class of irreducible representations of $\frak{gl}(m|n)$
论文作者
论文摘要
我们证明了一个决定性类型公式,可以根据基本表示的对称能力的字符及其duals的对称能力来计算一般说谎的superalgebra $ \ mathfrak {gl}(m | n)$的字符。该公式由J. van der Jeugt和E. Moens猜想,并概括为众所周知的Jacobi-Trudi公式。
We prove a determinantal type formula to compute the characters for a class of irreducible representations of the general Lie superalgebra $\mathfrak{gl}(m|n)$ in terms of the characters of the symmetric powers of the fundamental representation and their duals. This formula was conjectured by J. van der Jeugt and E. Moens and was generalized the well-known Jacobi-Trudi formula.