论文标题
二进制玻色 - 因子凝结物中的自束Supersolid Stripe阶段
Self-bound supersolid stripe phase in binary Bose-Einstein condensates
论文作者
论文摘要
自猜想以来,超验证性 - 超流体和晶体或无定形密度变化的共存 - 一直在猜想以来一直存在争议。虽然最初的重点是氦4,但最近的实验发现了超冷的偶极量子气体中的超压相。在这里,我们提出了一种新的自限制的超固相,以短距离相互作用的bose气体的二元混合物,利用自旋轨道耦合的非平凡特性。我们发现,从自限制的超固体条带相位的一阶相变为bose气体的最小液滴状态,这是Rabi耦合强度的函数。这些阶段是使用动量分布,横向自旋极化和超流体分数来表征的。过渡的临界点是在分析框架中估计的。预测的密度调节的超固定条纹和零毫米液滴相应在$^{39} $ k的二元混合物中与自旋轨道耦合进行实验观察。
Supersolidity - a coexistence of superfluidity and crystalline or amorphous density variations - has been vividly debated ever since its conjecture. While the initial focus was on helium-4, recent experiments uncovered supersolidity in ultra-cold dipolar quantum gases. Here, we propose a new self-bound supersolid phase in a binary mixture of Bose gases with short-range interactions, making use of the non-trivial properties of spin-orbit coupling. We find that a first-order phase transition from a self-bound supersolid stripe phase to a zero-minimum droplet state of the Bose gas occurs as a function of the Rabi coupling strength. These phases are characterized using the momentum distribution, the transverse spin polarization and the superfluid fraction. The critical point of the transition is estimated in an analytical framework. The predicted density-modulated supersolid stripe and zero-minimum droplet phase should be experimentally observable in a binary mixture of $^{39}$K with spin-orbit coupling.