论文标题
线性弹性中广义平面应力问题中腔的最佳鉴定
Optimal identification of cavities in the Generalized Plane Stress problem in linear elasticity
论文作者
论文摘要
对于线性弹性中的广义平面应力(GPS)问题,我们获得了对数类型的最佳稳定性估计,用于从牵引和位移的单个边界测量中确定薄的各向同性缸{}内平滑腔的反问题。结果是通过将GPS问题重新定义为Kirchhoff-love板状问题,从而在通风的功能方面,以及在均匀的Dirichlet条件下使用kirchhoff-love-love板算子在边界上使用强大的独特延续,这是最近在\ cite \ cite {l:arv}中获得的。
For the Generalized Plane Stress (GPS) problem in linear elasticity, we obtain an optimal stability estimate of logarithmic type for the inverse problem of determining smooth cavities inside a thin isotropic cylinder {}from a single boundary measurement of traction and displacement. The result is obtained by reformulating the GPS problem as a Kirchhoff-Love plate-like problem in terms of the Airy's function, and by using the strong unique continuation at the boundary for a Kirchhoff-Love plate operator under homogeneous Dirichlet conditions, which has been recently obtained in \cite{l:arv}.