论文标题

关于非共同多项式的伪根之间的合理关系

On the rational relationships among pseudo-roots of a non-commutative polynomial

论文作者

Retakh, Vladimir, Saks, Michael

论文摘要

对于非交换环r,我们考虑t [t]中多项式的因素化,其中t是一个中心变量。多项式p(t)的伪根是r中的元素x,为此存在多项式q(t)和s(t),使得p(t)= q(t)(t)(t-x)s(t-x)s(t)。我们通过使用钻石操作来用于模块化晶格的覆盖图,研究了P(T)之间存在的合理关系。

For a non-commutative ring R, we consider factorizations of polynomials in R[t] where t is a central variable. A pseudo-root of a polynomial p(t) is an element x in R, for which there exist polynomials q(t) and s(t) such that p(t)=q(t)(t-x)s(t). We investigate the rational relationships that hold among the pseudo-roots of p(t) by using the diamond operations for cover graphs of modular lattices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源