论文标题

在实用嘈杂的中间尺度量子设备中缓解逼真的噪音

Mitigating realistic noise in practical noisy intermediate-scale quantum devices

论文作者

Sun, Jinzhao, Yuan, Xiao, Tsunoda, Takahiro, Vedral, Vlatko, Bejamin, Simon C., Endo, Suguru

论文摘要

量子误差缓解(QEM)对于嘈杂的中间量子量子(NISQ)设备至关重要。尽管大多数常规的QEM方案都假设每个门之前或之后出现噪声的离散基电路,但假设不适合描述可能具有强大的门依赖性和复杂的非局部效应的逼真的噪声,以及一般的计算模型,例如模拟量子量子模拟器。为了应对这些挑战,我们首先扩展了场景,其中每个计算过程(数字或模拟)都通过连续的时间演变来描述。对于工程汉密尔顿或其他噪声算子的瑕疵中的噪声,我们表明它可以通过新型随机QEM方法有效地抑制它。由于我们的方法仅假定精确的单量子控制控制,因此它适用于所有数字量子计算机和各种模拟模拟器。同时,可以通过利用理查森外推法来抑制缓解程序中的错误。当我们用各种哈密顿量在能量放松,噪声和数字量子电路下进行数值测试时,并通过额外的两量子串扰来测试我们的方法时,我们通过两个订单显示了模拟精度的提高。我们评估计划的资源成本,并结论使用NISQ设备准确量子计算的可行性。

Quantum error mitigation (QEM) is vital for noisy intermediate-scale quantum (NISQ) devices. While most conventional QEM schemes assume discrete gate-based circuits with noise appearing either before or after each gate, the assumptions are inappropriate for describing realistic noise that may have strong gate-dependence and complicated nonlocal effects, and general computing models such as analog quantum simulators. To address these challenges, we first extend the scenario, where each computation process, being either digital or analog, is described by a continuous time evolution. For noise from imperfections of the engineered Hamiltonian or additional noise operators, we show it can be effectively suppressed by a novel stochastic QEM method. Since our method only assumes accurate single qubit controls, it is applicable to all digital quantum computers and various analog simulators. Meanwhile, errors in the mitigation procedure can be suppressed by leveraging the Richardson extrapolation method. As we numerically test our method with various Hamiltonians under energy relaxation and dephasing noise and digital quantum circuits with additional two-qubit crosstalk, we show an improvement of simulation accuracy by two orders. We assess the resource cost of our scheme and conclude the feasibility of accurate quantum computing with NISQ devices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源