论文标题
使用线性有理样条的可逆生成建模
Invertible Generative Modeling using Linear Rational Splines
论文作者
论文摘要
标准化流量试图通过一组可逆映射建模任意概率分布。需要这些转换来实现可在高维情况中使用的可拖动的雅各布决定因素。第一个归一化流设计使用的耦合层映射构建在仿射转换为基础上。这种模型的重要优点是它们易于计算的逆。然而,利用仿射转化可能会限制此类模型的表现力。最近,可逆分段多项式函数作为替代仿射转化的替代引起了人们的注意。但是,这些方法需要求解多项式方程以计算其反向。在本文中,我们探索了使用线性有理条纹作为耦合层中使用的仿射变换的替代。除了直接的逆,推理和生成在这种方法中还具有相似的成本和架构。此外,模拟结果证明了与现有方法相比,该方法的性能的竞争力。
Normalizing flows attempt to model an arbitrary probability distribution through a set of invertible mappings. These transformations are required to achieve a tractable Jacobian determinant that can be used in high-dimensional scenarios. The first normalizing flow designs used coupling layer mappings built upon affine transformations. The significant advantage of such models is their easy-to-compute inverse. Nevertheless, making use of affine transformations may limit the expressiveness of such models. Recently, invertible piecewise polynomial functions as a replacement for affine transformations have attracted attention. However, these methods require solving a polynomial equation to calculate their inverse. In this paper, we explore using linear rational splines as a replacement for affine transformations used in coupling layers. Besides having a straightforward inverse, inference and generation have similar cost and architecture in this method. Moreover, simulation results demonstrate the competitiveness of this approach's performance compared to existing methods.