论文标题
关于Subtori的安排的共同论
On the cohomology of arrangements of subtori
论文作者
论文摘要
鉴于在圆环中的任意编成的s子安排,我们计算了补体的共同体学组。然后,使用Leray光谱序列,我们描述了分级的共同体学上的乘法结构。我们还通过考虑曲折的奇妙模型及其摩根代数来为共同体学戒指提供差异模型。最后,我们专注于分区案件,证明了针对复曲安排的共同论的新演讲。
Given an arrangement of subtori of arbitrary codimension in a torus, we compute the cohomology groups of the complement. Then, using the Leray spectral sequence, we describe the multiplicative structure on the graded cohomology. We also provide a differential model for the cohomology ring by considering a toric wonderful model and its Morgan algebra. Finally we focus on the divisorial case, proving a new presentation for the cohomology of toric arrangements.