论文标题
有限扩展类中的避免色彩的避免色彩的方法
A color-avoiding approach to subgraph counting in bounded expansion classes
论文作者
论文摘要
我们提出了一种算法,以将图案图$ h $的出现数量计算为主机图$ g $中的诱导子图。如果$ g $属于有限的扩展类,则该算法在线性时间内运行。我们的设计选择是由于需要将方法设计成稀疏主机图的实际实现的方法所激发的。 具体而言,我们引入了一种模式$ h $的分解,称为计数dag $ \ vec c(h)$,该$ \ vec c(h)$编码$ h $的订单感知,包含 - 排斥计数方法。给定这样的计数dag和合适的线性订购$ \ mathbb g $的$ g $作为输入,我们的算法可以计算$ h $的时间$ h $作为$ g $ in PITIE $ o(\ | \ | \ | \ | \ | \ | \ | \ | \ cdot h \ cdot h \ cdt text { $ \ text {wcol} _h(\ mathbb g)$表示$ \ mathbb g $中的弱$ h $ - 可填充集的最大大小。这意味着,再加上先前的结果,一种带有运行时间$ o的算法$ O(4^{h^2} h(\ text {wcol} _h(g)+1)+1 +1)^{h^3} | g |)$,仅需要$ h $ h $ h $和$ g $作为输入。 我们注意到,经过少量修改,我们的算法可以使用强烈的$ h $ - 可填充设置$ o(\ | \ | \ vec c \ | \ cdot h \ cdot h \ text {col} _ {h} _ {h}(\ mathbb g) \ text {col} _h(g)^{h^2} | g |)$仅给定$ h $和$ g $。 由于可以在实践中相对有效地计算出小弱/可触及的订单[11],因此我们的算法为使用传统的$ p $ -TreeDepepth着色框架提供了一种有希望的替代算法的替代方法[13]。我们描述了最初的开源实现的初步实验结果,该结果突出了其潜力。
We present an algorithm to count the number of occurrences of a pattern graph $H$ as an induced subgraph in a host graph $G$. If $G$ belongs to a bounded expansion class, the algorithm runs in linear time. Our design choices are motivated by the need for an approach that can be engineered into a practical implementation for sparse host graphs. Specifically, we introduce a decomposition of the pattern $H$ called a counting dag $\vec C(H)$ which encodes an order-aware, inclusion-exclusion counting method for $H$. Given such a counting dag and a suitable linear ordering $\mathbb G$ of $G$ as input, our algorithm can count the number of times $H$ appears as an induced subgraph in $G$ in time $O(\|\vec C\| \cdot h \text{wcol}_{h}(\mathbb G)^{h-1} |G|)$, where $\text{wcol}_h(\mathbb G)$ denotes the maximum size of the weakly $h$-reachable sets in $\mathbb G$. This implies, combined with previous results, an algorithm with running time $O(4^{h^2}h (\text{wcol}_h(G)+1)^{h^3} |G|)$ which only takes $H$ and $G$ as input. We note that with a small modification, our algorithm can instead use strongly $h$-reachable sets with running time $O(\|\vec C\| \cdot h \text{col}_{h}(\mathbb G)^{h-1} |G|)$, resulting in an overall complexity of $O(4^{h^2}h \text{col}_h(G)^{h^2} |G|)$ when only given $H$ and $G$. Because orderings with small weakly/strongly reachable sets can be computed relatively efficiently in practice [11], our algorithm provides a promising alternative to algorithms using the traditional $p$-treedepth colouring framework [13]. We describe preliminary experimental results from an initial open source implementation which highlight its potential.